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Abstract

We study how a COVID-19 like pandemic spreads through the labor market, and
what it implies for the dynamics of wages and unemployment rates. The model
predicts a segmentation of the labor market between those that have recovered and
those that are not yet infected. Wages fall during the early phases of the pandemics,
and then rise as the pandemics progresses. The unemployment rate increases among
those not yet infected, decreases among those recovered, and increases overall.

We also characterize the efficient allocations and optimal policies. It is optimal to
shut down businesses and impose a quarantine several weeks before the pandemic
peaks and, in addition, to tax business creation. It is optimal to move approximately
one quarter of workers out of employment. The optimal policies can reduce the
fraction of people infected by about 10 percentage points.

1 Introduction

We study how the recent outbreak of the COVID-19 pandemics affects the behavior
of the labor markets, and what it implies for government policies. Labor markets are
deeply affected by the ongoing pandemics in several ways. First, infected and deceased
people directly reduce labor market participation. Second, labor market activities in-
volve social interactions and labor market participation thus contributes to the spread
of the infection, but may also reduce the willingness to participate in the labor market
itself if people are worried about getting infected. Finally, a transmission of the virus
is an externality and the labor market will not, by itself, function efficiently during a
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pandemic. This not only has potentially important implications for the wage dynamics,
but also calls into question what the optimal policy responses are.

We use a standard Mortensen-Pissarides (Pissarides (1985), Mortensen and Pissarides
(1994)) model of a frictional labor market, and incorporate aspects of a canonical epi-
demiological SIR model (Kermack and McKendrick (1927)) to address those questions.
Specifically, we use this framework to study how labor market responds in terms of
wages and unemployment rates, whether the labor markets helps to spread the epi-
demics or inhibits it, whether (and when) is it optimal to limit labor market participation,
and spread the epidemics over longer periods, and whether a tax on business creation is
optimal during the pandemics.

There are two key ingredients in the model. First, as in standard in the SIR models,
the probability of getting infected depends on the number of infected people in the
economy. Second, the probability of getting infected is higher if one participates in the
labor market. The individuals participating in the labor market take into account that
they have a higher chance of getting infected, but they do not take into account that there
is a higher chance that they will then infect others. This generates a negative externality
and a spread of the virus that is too high.

The labor market during the pandemics temporarily separates into two: a labor mar-
ket for the people that have already recovered, and a labor market for those that have not
yet been infected, and are susceptible to the infection. The effect on wages for susceptible
workers is non-monotonic, with wages first falling and then rising as the pandemic pro-
gresses. Workers are wary of becoming infected while employed, leading to increased
reservation wages. Moreover, as more people become infected this effect gets stronger.
However, the value of a match declines and reaches a minimum when the probability
of becoming infected is highest. At the beginning of the pandemic wages fall as the
job value effect dominates. As the pandemics progresses, the reservation wage effect
dominates and wages rise.

The overall unemployment rises as the pandemic takes hold. Depending on the sce-
nario, we find that the unemployment rate at the peak of the pandemic ranges between
10%-30%. This result is driven by the labor market for the susceptible workers who are
less willing to participate in the labor market, and are also more costly for the potential
employers because of a shorter expected tenure and higher cost. The unemployment
rate for recovered workers, on the other hand, falls. This is because of a selection ef-
fect: employed people are more likely to get infected and so enter the pool of recovered
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people at a higher rate than the unemployed. In the long run, the unemployment rate
converges back to its steady state value.

We also characterize the labor market with wages that are rigid and stay unchanged
during the pandemics. Rigid wages increase unemployment during the pandemics, but
that reduces the externality in the infection propagation. Interestingly, rigid wages then
dominate flexible wages in our scenario, even when the Hosios condition holds, and la-
bor markets with flexible wages would be efficient in the absence of the pandemics. Flex-
ible wages, and especially their decline at the beginning, thus contribute to the spread
of the infection.

Turning to the efficient allocations and optimal policies, we study two versions of
the planning problem. In one, the social planner is able to move people out of em-
ployment, essentially shutting down businesses and quarantining workers. We call this
a planning problem with quarantine. In the other one, the planning problem without
quarantine, the planner is not able to do so and must respect the labor market separa-
tion rate given exogenously. We find that the social value of the match becomes negative
before the pandemic peaks, even though its private value is still positive and firms, left
by themselves, would like to create more vacancies. Labor market tightness (vacancies
to unemployment ratio) then goes to zero and it is optimal for the planner to impose a
quarantine. It does so only once, at the onset of the pandemics, and reallocates about a
quarter of the employed people out of employment. This saves a substantial number of
lives: the fraction of people infected or dead is reduced by more then 10 percent, saving
approximately 339 000 lives. Regardless of whether the planner can impose quarantine
or not, it is also optimal to tax the creation of vacancies, especially during the peak of the
pandemics. Quarantine itself is thus not enough to implement the efficient allocation.

2 Related Literature on Pandemics

The progression of an epidemics has been typically analyzed by means of epidemiol-
ogy models, typically a variant of a SIR model (Kermack and McKendrick (1927), that
characterizes the dynamics of people that are susceptible to an infection, infected, and
recovered. The epidemiology models are useful for tracking out pandemics for a given
set of transition probabilities, but are, by themselves, not useful for studying the mutual
interaction between epidemics and the economy. They are also not a useful framework
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for studying optimal policy responses.
This paper joins a rapidly growing literature that tries to understand and quantify

the forces present in the SIR model (or the SEIR model, which adds an exposed stage),
and to embed them within an economic framework. Atkeson (2020) solves for various
scenarios of the COVID-19 pandemics within a canonical SIR model. Alvarez et al. (2020)
and Piguillem and Shi (2020) study optimal lockdowns, while Berger et al. (2020) study
optimal testing and quarantines, within essentially the same framework of a standard
SIR model. None of those papers explicitly models labor markets during the pandemics.

Eichenbaum et al. (2020) merge the SIR model with a dynamic representative agent
framework study optimal policy responses to a pandemic. Like in our paper, one of the
central features of their model is an externality generated by individual behavior. In their
case it is both higher labor supply and higher consumption that increase the probability
of spreading the infection. In contrast to them, we focus on the behavior of labor markets
and its role in spreading (or slowing down) the pandemics, and on labor market policies.
Also, our model is a heterogeneous agent version of a SIR model, where the key factor is
that employed people have a different probability of getting infected than nonemployed.

One of the key aspects of the pandemics is that its impact on the population is hetero-
geneous, both in terms of its direct losses, and in terms of its implications for individual
behavior. Glover et al. (2020) show how the epidemics can bring about intergenerational
conflicts and new trade-offs for the government. Guerrieri et al. (2020) show how a
negative supply shock can create negative demand shocks of even larger magnitudes.
A key ingredient in their model is a heterogeneity across sectors of the economy, just
like a heterogeneity in the labor market status is a key aspect of our model. However,
their mechanisms are quite different from ours, and they do not explicitly model the
propagation of epidemics itself. Naturally, some of the policy implications are different
as well: while in our model it is efficient to move people out of employment to reduce
the externality, in their model it is optimal to subsidize businesses to reduce exits and
stimulate demand. It is, of course, natural, that both mechanisms are in place at some
point during the pandemics, perhaps with different intensities at different stages.1

1Demand shocks arising from a pandemics are also studied, within a DSGE framework, by Faria e
Castro (2020), who characterizes the optimal fiscal policy during pandemics.
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3 An Accounting Framework

We start by characterizing the flows in the economy, both across the health status and
across the employment status. The initial population is normalized to one. The popula-
tion of living people at time t is denoted by Nt and the population that has died by the
end of period t is denoted by Dt. Since people can be either dead or alive, the sum of
both is equal to one:

Nt + Dt = 1.

We categorize the living population in two dimensions. Along the labor market dimen-
sion, people can be either employed (E) or unemployed (U). The other one is health
status: people can be susceptible to infection but not yet infected (S), infected (I), or re-
covered (R). Recovered people are no longer susceptible to repeated infection. The total
number of unemployed in period t, Ut, is the sum of unemployment across the health
categories, and Et is the sum of the employment across the health categories:

Ut = USt + UIt + URt

Et = ESt + EIt + ERt,

where USt denotes the stock of susceptible unemployed in the beginning of period t, UIt

denotes the stock of infected unemployed in the beginning of period t, and URt denotes
the stock of recovered unemployed in the beginning of period t. Similarly, ESt, EIt and
ERt are employed susceptible, employed infected, and employed recovered. Aggregating
across health status, we get the total number of susceptible, infected and recovered:

St = USt + ESt

It = UIt + EIt

Rt = URt + ERt.

The total living population consists of only unemployed and employed or, alterna-
tively, of only the susceptible, infected and recovered, and so the following equalities
hold:

Nt = Ut + Et = St + Ut + Rt.
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Health transition probabilities. We now describe the probabilities of transiting from
one state to another. In the accounting framework, we take all the transition probabilities
as given. We will later provide a theory that endogenizes some of them.

We assume that the rate at which susceptible people get infected depends on their
labor market status. Employed individuals have probability πEI of getting infected in
the course of their employment, while unemployed individuals have a probability πUI

of getting infected by interacting with other people. We think of those probabilities as
reflecting the number of social interactions that people have. The underlying assumption
is that the unemployed interact less with other people because they do not go to work,
and their probability of getting infected is lower. Hence we expect πUI < πEI .2

Once people get infected,they recover from the infection with probability πR. With
probability πD, they die from the infection. With the remaining probability 1− πR − πD

they continue being infected next period. Both probabilities are assumed to be indepen-
dent of the employment status.

Employment transition probabilities. The dynamics of the labor market is driven by
the job finding and job separation probabilities. The probability of finding a job depends
on the health status. Susceptible people can find a job with probability pS while re-
covered people can find a job with probability pR. We assume that the infected people
cannot look for a job at all. If they get infected while being unemployed, they will stay
unemployed until they recover or die. If a susceptible unemployed finds a job and gets
infected at the same time, he cannot take the job and remains unemployed.

On the other hand, we assume that the probability with which the employer and
employee separate, λ, is independent of the health status of the employee. That is,
employees cannot get fired just because they get infected. If a susceptible employed gets
infected, he cannot be fired and stays employed, although he is temporarily on a sick
leave and is unproductive.

There are six types of living people in the economy, given by the combination of three
health states of living people and two employment states. The transitional probabilities
above determine the laws of motion for each category of people. For employed people,

2All the transition probabilities can be time dependent. We write them without time subscript only to
save on notation.
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the inflows and outflows are as follows:

ESt+1 = (1− λ)(1− πEI)ESt + pS(1− πUI)USt (1a)

EIt+1 = (1− λ)(1− πR − πD)EIt + (1− λ)πEIESt (1b)

ERt+1 = (1− λ)ERt + (1− λ)πREIt + pRURt. (1c)

The number of employed susceptible next period is reduced because a fraction (1−
λ)πEI is not separated from the employer but gets infected, a fraction λ(1− πEI) does
not get infected but gets separated, and a fraction λπEI gets both separated and infected.
Thus, only a fraction (1− λ)(1− πEI) remains. On the other hand, a fraction pS(1−
πUI) of unemployed susceptible finds a job and does not get infected, and so becomes
employed susceptible. The number of employed infected is reduced because a fraction
(1− λ)πR recovers while keeping the job, a fraction λ(1− πR − πD) loses their job and
continues being infected (i.e. does not die or recovers), λπR gets separated and recovers,
and a fraction πD dies. On the other hand, the stock is increased by a fraction (1 −
λ)πEI of susceptible employees who become infected. Finally, the number of employed
recovered decreases because a fraction λ loses their job, but a fraction (1 − λ)πR of
infected employees recover and stay on the job, and a fraction pR if unemployed who
are already recovered finds a job.

The dynamics of the unemployed categories is determined by the following flows:

USt+1 = (1− pS)(1− πUI)USt + λ(1− πEI)ESt (2a)

UIt+1 = (1− πR − πD)UIt + πUIUSt + λπEIESt + λ(1− πR − πD)EIt (2b)

URt+1 = (1− pR)URt + πRUIt + λπREIt + λERt (2c)

The pool of unemployed susceptible decreases because a fraction (1− pS)πUI does not
find a job but becomes infected, a fraction pSπUI finds a job and become infected, and
a fraction pS(1− πUI) finds a job but does not get infected. A fraction λ(1− πEI) of
employed susceptible workers gets separated without catching the virus and adds to
pool. The unemployed infected are not looking for a job, and so the pool gets reduced
only by recovering (fraction πR) or by dying (fraction πD). Increasing the pool of un-
employed infected are susceptible unemployed who get infected (regardless of their job
market outcome) with probability πUI , and susceptible employed who get infected and
also happen to get fired with probability λπEI . Infected employed can also become
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infected unemployed by losing their job while avoiding dying or recovering with prob-
ability λ(1− πR − πD). Finally, the stock of unemployed recovered is reduced because
a fraction pR finds a job, and increased because a fraction πR of unemployed infected
recovers, a fraction λπR of employed infected is fired but recovers at the same time, and
a fraction λ of employed recovered loses their job.

It follows that the number of dead people keeps growing, with the increments being
a fraction πD of the infected people:

Dt+1 = Dt + πD(EIt + UIt).

We can aggregate across health status to express the law of motion for the total
number of employed and unemployed:

Et+1 = (1− λ) (Et − πDEIt) + pSUSt + pRURt

Ut+1 = (1− pS)USt + (1− pR)URt + (1− πD)UIt + λ(Et − πDEIt)

The evolution of aggregate employment and unemployment cannot be expressed in
terms of the labor market aggregates themselves for three reasons. First, the number
of people who leave the labor market by kicking the bucket depends only on the num-
ber of infected people. Second, infected people cannot look for a job, and so the rate at
which people transition to the employment status depends on the number of infected
unemployed. Third, job finding probabilities also depend on whether people are sus-
ceptible or recovered.

Aggregating across the employment status yields

St+1 = (1− πUI)St − (πEI − πUI)ESt

It+1 = (1− πR − πD)It + πUISt + (πEI − πUI)ESt

Rt+1 = Rt + πR It.

The aggregation is again only partial, this time because unemployed and employed have
a different probability of being infected. Only if πUI = πEI then the law of motion can
be expressed entirely in terms of health status aggregates S, I and R.3

3In particular, St+1 = (1− π I)St, It+1 = (1− πR − πD)It + π ISt, and Rt+1 = Rt + πR It.
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Dynamics. We think of the pandemics as follows. At the initial steady state, no one is
infected or dead, and everyone is susceptible, either employed or unemployed. At time
zero, a small fraction of individuals gets exogenously infected. The pandemics spreads
throughout the population. At the end, the economy settles into new steady state, where
everyone who is alive is recovered, and there are no susceptible or infected people.

4 The Model

Our goal now is to provide a theory of how some of the transition probabilities in the
above accounting framework are determined in equilibrium. In particular, we want
to characterize the job hiring probabilities pS

t and pR
t , and their dynamics during the

transition. We will also endogenize the infection probabilities πEI and πUI . We also
want to use the theory to characterize the dynamics of wages over the transition, welfare
consequences of the pandemics, and optimal policies.

4.1 Labor Market

The labor market is frictional. We assume that the labor market for the susceptible
people is separate from the labor market for the recovered people. It is beneficial for the
recovered people to signal that they have already recovered, because they no longer face
any potential disruptions to their productivity. The key assumption is that susceptible
people cannot pretend to have recovered. It is reasonable to assume that it would be in
the overall public interest to separate the two groups.4 The assumption also simplifies
the model substantially, because potential employers do not have to solve a screening
problem that would otherwise arise.

Firms create vacancies in each of the two labor markets, VSt and VRt. The number
of new jobs created among the susceptible and recovered, HSt and HRt, depends on the
total number of unemployed and the number of vacancies in each labor market, and is
given by a matching function m:

HSt = m(USt, VSt)

HRt = m(URt, VRt).

4In the movie Epidemics (2011), people who have already been vaccinated wear special armbands.
Presumably, counterfeiting the armbands would be criminalize.
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The function m is common in both labor markets. It has standard properties, it is in-
creasing and concave in both arguments, differentiable, and is constant returns to scale.

The labor market tightness will differ across both labor markets. We denote the labor
market tightness in the susceptible labor market by θS

t = VSt/USt, and in the recovered
labor market by θR

t = VRt/URt. The job finding probabilities in both markets depend
only on their respective labor market tightness and are

pS
t = p(θS

t ) (3a)

pR
t = p(θR

t ). (3b)

where p(θ) = m(1, θ). The probabilities of filling a vacancy in each market are qS
t =

p(θS
t )/θS

t and qR
t = p(θR

t )/θR
t . We note that the labor market tightness, and the asso-

ciated job hiring probabilities, will only differ during the outbreak of the epidemics.
Before and after the epidemics, they will be the same, because the matching function is
the same.

4.2 Infection Propagation

The probability that a worker gets infected is endogenous and depends on the inter-
actions with other people. We assume that if there is more infected workers around,
the probability of getting infected increases.5 We model it as follows: the probability
that employed and unemployed workers get infected is proportional to the number of
currently infected people:

πEI
t =

ETt

ESt
= sE It (4a)

πUI
t =

UTt

USt
= sU It. (4b)

The underlying assumption is that both employed and unemployed interact with all
infected people, although at different rates, given by constants sE and sU.6 The number

5It is reasonable to conjecture that, once a worker is revealed to be infected, he is quarantined and
no longer interacts with other workers. However, he interacts with other workers during the incubation
period, which we do not model explicitly for simplicity.

6We also considered a version where the employed people interact more with other employed people,
and their infection probability depends on EI instead of I. The results were similar.
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of newly infected employed and unemployed, ETt and UTt, is

ETt = sE ItESt

UTt = sU ItUSt.

4.3 Unemployed Workers

An unemployed worker enjoys non-monetary benefits b per period, regardless of its
health status. Infected workers, however, incur additional utility loss c per period. The
utility loss reflects pain and additional non-monetary costs associated with the infection.

Let KUS
t , KUI

t and KUR
t be the lifetime utility of an unemployed worker who is, re-

spectively, susceptible, infected and recovered. The timing for the unemployed in the
susceptible category is as follows. They search for a new job during the period. At the
end of the period, it is revealed whether the worker has found a job and whether he
got infected during the period. We assume that a worker who has found a match but
is infected at the same time is prohibited from signing a contract, and the match is not
formed. The wage, which is determined in a way that we describe below, is then formed
only for workers that are susceptible, but will be able to work during the first period.
The value function of a susceptible unemployed is

KUS
t = b + β

[
pS

t+1(1− πUI
t+1)K

ES
t+1 + πUIKUI

t+1 + (1− pS
t+1)(1− πUI

t+1)K
US
t+1

]
, (5)

where KES is the value function of a susceptible employed worker. The infected unem-
ployed incur the disease cost c but also face different transition probabilities, in particular
they can recover or die, but cannot become employed. Their value function is:

KUI
t = b− c + β

[
πRKUR

t+1 + πDD + (1− πR − πD)KUI
t+1

]
, (6)

where D is the value of death, which we normalize to zero. Finally, the recovered
unemployed face a relatively standard labor search problem

KUR
t = b + β

[
pR

t+1KER
t+1 + (1− pR

t+1)K
UR
t+1

]
, (7)

where KER is the value function of employed recovered.
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4.4 Employed Workers

A job is formed by matching a firm with a worker. A match between susceptible or
recovered workers and a firm produces y units of output per period. Infected people
are unproductive until they recover and produce zero. Once a match is formed, the
worker and the firm bargain about their wage. We describe the wage formation in detail
below. The main assumption is that there are no long-term contracts and the wage is
renegotiated continuously every period, including periods when the worker is infected
and is on a sick leave.

The value functions of employed workers are KES
t , KEI

t and KER
t . The value function

of susceptible employees solves

KES
t (w) = w + β

{
λ
[
(1− πEI

t+1)K
US
t+1 + πEI

t+1KUI
t+1

]
+ (1− λ)

[
(1− πEI

t+1)K
ES
t+1 + πEI

t+1KEI
t+1

]}
(8)

When an employed worker gets infected, he is not productive. As mentioned pre-
viously, the worker cannot be fired just because he is infected, and so separates either
because he is fired for other reasons (with probability λ), or because he dies (with prob-
ability πD). During sickness, he collects a fraction of his wage, which is negotiated with
the employer. If the worker recovers, he regains his previous productivity. The infected
employees also incur a utility cost c. Their value function satisfies

KEI
t (w) = w− c + βλ

[
πRKUR

t+1 + (1− πR − πD)KUI
t+1

]
+ β(1− λ)

[
πRKER

t+1 + (1− πR − πD)KEI
t+1

]
+ πDD. (9)

Finally, recovered employees have a value function

KER
t (w) = w + β

[
λKUR

t+1 + (1− λ)KER
t+1

]
. (10)

4.5 Firms

Firms can post vacancies in the labor market for susceptible workers, or in the labor
market for recovered workers. Firms in the first labor market take into account that a
susceptible worker may find a job and get infected, either immediately, in which case a
match is not formed, or later. Firms in the second labor market are, on the other hand,
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sure that the worker will not get infected. To characterize the firms problem, we first
consider the value of a filled job conditional on a health status of its worker, JS

t , J I
t and

JR
t . The value of having a susceptible worker is

JS
t (w) = y− w + β

{
λVt+1 + (1− λ)

[
πEI

t+1 J I
t+1 + (1− πEI

t+1)JS
t+1

]}
, (11)

where Vt+1 is the value of a vacancy in period t + 1. The value of having an infected
worker is

J I
t (w) = −w + β

{
[πD + λ(1− πD)]Vt+1 + (1− λ)πR JR

t+1 + (1− λ)(1− πR − πD)J I
t+1

}
.

(12)

Finally, the value of having a recovered worker is

JR
t (w) = y− w + β

[
λVt+1 + (1− λ)JR

t+1

]
. (13)

Posting a vacancy has a cost k irrespective of the market. The value of vacancy in the
market for susceptible workers is

Vt = −k + β
[
[1− qS

t+1(1− πUI
t+1)]Vt+1 + qS

t+1(1− πUI
t+1)JS

t+1

]
Similarly, the value of vacancy in the market for recovered workers is

Vt = −k + β
[
qR

t+1 JR
t+1 + (1− qR

t+1)Vt+1

]
Free entry. Firms are free to enter any of the two markets anytime. This means that the
value of a vacancy, Vt, equals zero. That is, in equilibrium, the cost of creating a vacancy
equals the expected benefits from doing so,

β(1− πUI
t+1)JS

t+1 =
k

qS
t+1

(14)

βJR
t+1 =

k
qR

t+1
(15)
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4.6 Wage determination

The wages in both markets are determined as a result of Nash bargaining between both
parties. We assume that the wage can be renegotiated continuously at the beginning of
the period. Both parties know the health status of the worker and so have a symmetric
information. The wage in the market for susceptible, infected and recovered workers is
a solution to

wS
t = arg max

(
JS
t

)1−φ (
KES

t − KUS
t

)φ
(16)

wI
t = arg max

(
J I
t

)1−φ (
KEI

t − KUI
t

)φ
(17)

wR
t = arg max

(
JR
t

)1−φ (
KER

t − KUR
t

)φ
. (18)

where φ ∈ [0, 1] is the bargaining weight of the worker. The bargaining weight is iden-
tical in all markets, and the bargaining problem already incorporates the result that the
value of vacancies, the outside option for the firm, is equal to zero.

Since the value functions KUI , KUS and KUR are all independent of the bargained
wage and there is a fixed surplus to be divided, the first-order conditions are that

KES
t − KUS

t =
φ

1− φ
JS
t

KEI
t − KUI

t =
φ

1− φ
J I
t

KER
t − KUR

t =
φ

1− φ
JR
t .

4.7 Equilibrium

The initial conditions are given by (US0, ES0, UI0, EI0, where the values of UI0 and EI0

can be thought of as being small, as they would be at the onset of a pandemics, and the
number of recovered people is zero, UR0 = ER0. The equilibrium is given by type allo-
cations {USt, ESt, UIt, EIt, URt, ERt, Dt}, value functions {KUS

t , KUI
t , KUR

t , KES
t , KEI

t , KER
t }

for the worker, value functions {JS
t , J I

t , JR
t } for the firm, wages {wS

t , wR
t }, labor market

tightness {θS
t , θR

t } such that i) worker value functions satisfy (5)-(10), ii) firm value func-
tions satisfy (11)-(13)„ iii) free entry conditions (14) and (15) hold, iv) wages solve (16)-
(18), v) aggregates evolve according to (1) and (2), and vi) job finding and infection
probabilities are given by (3) and (4).
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5 Solving the Model

Since the workers always proceed from being susceptible to being infected to being
recovered, the model can be solved recursively, starting from the recovered stage, then
proceeding to the infected stage, and finally to the susceptible stage.

Recovered stage. The recovered stage has a time invariant solution. Market tightness,
wage, and all the value functions are independent of time, and identical to their value
before the pandemic started. The dynamics of the recovered stage is only reflected in
the unemployment rate. The solution is a textbook one, and we provide it mainly so as
to compare it to the solution in other stages. Define the total surplus of the match in the
recovered stage as FR = JR + KER − KUR. The value of the match is independent of the
wage. Then KER−KUR = φFR and JR = (1− φ)FR. Adding together the value functions
in the recovered stage, we obtain the value of the surplus

FR =
y− b

1− β[1− λ− φp(θR)]
,

where we are now explicit about the relationship between the probability of finding a
job and the market tightness in the recovered stage. Combining with the free entry
condition (15) yields the textbook equation in the market tightness θR:

y− b
k

=
1/β− 1 + λ + φp(θR)

(1− φ)q(θR)
.

To characterize the equilibrium wage, we define the reservation wage as a wage that,
if paid in the current period (not permanently), makes the worker indifferent between
accepting and not accepting the job offer. It is defined by KER(wR) = KUR, which can be
solved for

wR = b + βpRφFR − β(1− λ)φFR. (19)

The reservation wage increases above the unemployment benefits because there is an
option, with probability pR, of waiting until next period, negotiating, and getting a
fraction of the surplus φFR tomorrow. On the other hand, the reservation wage decreases
because there is an option of continuing on the job tomorrow, with probability 1− λ.7

7While the expression can be further simplified, we prefer to keep it in the current form to facilitate a
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The equilibrium wage wR is then a sum of the reservation wage plus a fraction φ of the
surplus of the match:

wR = wR + φFR. (20)

The worker thus gets his reservation wage and his share of the match, given by his
bargaining power. Replacing the reservation wage and the value of the surplus yields
the equilibrium wage as a direct function of the market tightness ratio,

wR = (1− φ)b + φ(y + kθR)

As usual, higher market tightness means that workers are more likely to find a job, and
can command a higher wage. We also solve explicitly for value functions of the worker
KER and KUR:

KUR =
b

1− β
+

βφp(θR)

1− β
FR, KER =

wR

1− β
+

βφλ

1− β
FR.

Infected stage Once the solution to the problem in the recovered stage is known, we
can solve the problem in the infected stage. Since the probabilities of recovery and death
are constant over time by assumption, the infected stage has a time invariant solution as
well. The value of a match in the infected stage is FI = J I + KEI − KUI . The bargaining
protocol again implies that it is divided according to the bargaining power. Since the
problem is time invariant, FI

t is also constant over time and is a solution to

FI =
−b + β(1− λ)πRFR

1− β(1− λ)(1− πR − πD)
.

The expression is different from FR in one important aspect. The current surplus is
−b rather than y − b because nothing is produced in the infected stage. Instead, the
value of the match is given purely by its future surplus, once the worker recovers and
becomes productive again. This is represented by the second term β(1− λ)πRFR, where
the probability (1− λ)πR denotes the probability that the worker recovers and the match
continues.

The reservation wage in the infected stage is determined differently. It is given by

comparison to the reservation wages in other stages.
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the following expression:

wI = b− βπR(1− λ)
(

KER − KUR
)

.

The reservation wage is lower than the unemployment benefits because infected people
are not able to look for a job directly and so must enter the recovered stage as unem-
ployed. If they could, they would then be willing to take a wage cut, relative to benefits,
in order to obtain a job now and enter the recovered stage as employed. The size of
the cut, βπR(1− λ)

(
KER − KUR), depends on the gain from being employed in the re-

covered stage, KER − KUR, and the probability that the worker transits employed to the
recovered stage, πR(1− λ).

Analogously to (20), the equilibrium wage wI is a weighted average of the reservation
wage wI , and the surplus of the match. The surplus of the match is now different,
however. It is given by φβ(1− λ)πR JR and so the wage is

wI = φβ(1− λ)πR JR + (1− φ)wI . (21)

Combining both expressions, we obtain that the equilibrium wage in the infected stage
is simply given by

wI = (1− φ)b.

On one hand, the future surplus β(1− λ)πR JR in (21) drives the wage of the infected
above the reservation wage. On the other hand, the reservation wage is lower than
the unemployment benefits. In equilibrium, the second effect dominates, and the wage
is a fraction of the unemployment benefits. The equilibrium wage in turn yields the
equilibrium value of the firm J I ,

J I =
−(1− φ)b + β(1− λ)πR JR

1− β(1− λ)(1− πR − πD)
,

the value of an unemployed infected,

KUI =
b− c + βπRKUR

1− β(1− πR − πD)
,
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and, finally, the value of infected employees:

KEI =
(1− φ)b− c + βπR

[
λKUR + (1− λ)KER]+ βλ(1− πR − πD)KUI

1− β(1− λ)(1− πR − πD)
.

Susceptible stage. Unlike the last two stages, the problem in the susceptible stage
does not have a time invariant solution because the probabilities of being infected are
not constant over the pandemics. We again define the value of a match in the susceptible
stage by FS

t = JS
t + KES

t − KUS
t and divide it between both parties according to their

bargaining power, KES
t − KUS

t = φFS
t and JS

t = (1− φ)FS
t .

We first characterize the law of motion of the output match FS
t . The current value FS

t

depends not only on future match values FS
t+1 and FI , but also on the utility loss that

a susceptible person gets from getting infected ∆S
t+1 = KUI − KUS

t+1. By rearranging the
value functions for the firm and the workers, we find that the law of motion is given by

FS
t = y− b + β(1− λ)

[
πEI

t+1FI + (1− πEI
t+1)FS

t+1

]
− βφpS

t+1(1−πUI
t+1)FS

t+1

+ β
(

πEI
t+1−πUI

t+1

)
∆S

t+1 (22)

The law of motion for the loss from getting infected, ∆S
t , is

∆S
t = (1− β)KUI − b− β(1− πUI

t+1)
(

φpS
t+1FS

t+1 − ∆S
t+1

)
. (23)

The loss from getting infected consists of several parts. First, there is the difference
between the period utilities (1− β)KUI − b, which is constant over time. Second, the loss
in utility comes from the fact that an individual cannot get a job while being infected,
while a susceptible worker gets a job with a probability (1− πUI

t+1)pS
t+1 , in which case

the worker gets a share φ of the surplus. Finally, we correct for the fact that the worker
might get infected tomorrow, in which case he has an additional loss ∆S

t+1.

In addition to (22) and (23), the free entry condition (14) must hold as well. This gives
us a third set of equations. Those equations are to be solved for equilibrium sequences
{FS

t , ∆S
t , θS

t }. The system can be solved as follows. Using the above system of equations,
given FS

t+1, ∆S
t+1 and θS

t+1, solve for FS
t and ∆S

t . Then use the free entry condition to
obtain θS

t . Iterate until the beginning. We start by assuming that the system is in steady
state after some sufficiently distant date T.

We now characterize the sequence of wages {wS
t }. The reservation wages {wS

t } are
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such that a currently susceptible worker is indifferent between working and not working:

KUS
t = KES

t (wS
t ).

Rearranging, we obtain

wS
t = b + βφpS

t+1(1−πUI
t+1)FS

t+1 − β(1− λ)φ
[
πEI

t+1FI + (1− πEI
t+1)FS

t+1

]
− β

(
πEI

t+1−πUI
t+1

)
∆S

t+1. (24)

The reservation wage is a product of several forces. The second and third term on the
right-hand side are together are analogous to the second term on the right-hand side
of the reservation wage in the recovered stage (20). An option of waiting, not getting
infected and negotiating tomorrow increases the reservation wage, while an option of
continuing on the job tomorrow decreases the reservation wage. A reasonable guess is
that a person is more likely to be an employed susceptible tomorrow if it takes the job
today, (1− λ)(1− πEI

t+1) > pS
t+1(1− πUI

t+1): while the infection probability is somewhat
higher on the job, the probability of losing the job λ is likely to be much smaller than the
probability of finding a job pS

t+1. Under those conditions, a higher value of a susceptible
match FS

t+1 makes the workers more willing to accept job and reduces the reservation
wage. The last term in the reservation wage equation (24) is novel. It decreases the
reservation wage, because accepting a job increases the probability of getting infected.8

For example, if both infection probabilities get proportionally higher, the reservation
wage will decrease.

The equilibrium wage is then again equal to the reservation wage plus a fraction φ if
the match:

wS
t = wS

t + φFS
t . (25)

The equation (25) shows that the equilibrium wage is a product of two forces that will
be under detailed scrutiny later: the reservation wage and the value of the match.

8The reservation wage increases because πEI
t+1−πUI

t+1 > 0 and the ∆S
t+1 denotes the loss from getting

infected, and so is negative.
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6 Calibration

A period is one week. an annual interest rate is 2 percent, and so the discount factor is
set to β = 0.981/52. The calibration of the labor sector is standard. Output is set to one,
and the value of being unemployed is set to 0.4, as in Shimer (2005).9 The separation
rate λ is set equal to 1/130 which produces an average job duration of 130 weeks, which
is 2.5 years. We target a quarterly job finding probability of 0.45 which translate to a
weekly job finding probability of 0.45× 12/52 = 0.104. The bargaining power of the
workers is 0.72, a value again taken from Shimer (2005). We assume that the matching
function is Cobb-Douglas:

m(U, V) = aUαV1−α.

The elasticity of the matching function α is also set to 0.72, ensuring that the Hosios
condition holds, and the only source of inefficiency comes from the transmission of the
epidemic. The steady state labor market tightness is normalized to one. This produces
the value of a equal to the job finding probability and the value of posting a vacancy
k = 0.21.

As for the calibration of the epidemic, we follow Atkeson (2020) and Eichenbaum
et al. (2020), and set the probability of death πD = 7× 0.01/18, and the probability of
recovery to πR = 7× 0.99/18. Those values ensure that, in the long run, one percent
of the infected dies. The ratio sU/sE determines the probability that the unemployed
get infected relative to the employed. We calibrate it as follow. Edmunds et al. (1997)
report the results of a survey of mixing patterns among a sample of adults. Their figure
4 implies that participants in the sample has approximately 125 contacts per week. Out
of those, 66.5 contacts were work related; the rest of the contacts were social, at home,
shopping and travel related. That is, non-work related contacts were 46.8 percent of total
contacts. Accordingly, we set sU/sE = 0.468. Finally, we target a steady state value of
infected and recovered people to be two thirds. This yields sE = 0.6598. Table 1 shows
the calibrated parameters. Finally, we set the cost of being infected c = 0.2, thus reducing
the value of being unemployed to a half.

We initialized the pandemics by assuming that 0.1 percent of the population gets
infected for exogenous reasons. We assume that the proportion of infected workers is
the same among employed and unemployed workers.

9The level of output and benefits is actually not a normalization, because the value of death is already
set to zero. We find that values higher than one do not have a significant effect on the results.
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Table 1: Benchmark Parameters

parameter value target

β 0.9996 2% annual interest rate
y 1 normalization
b 0.4 Shimer (2005)
λ 0.0077 average job duration of 2.5 years
φ 0.72 Shimer (2005)
a 0.1038 normalization
α 0.72 Hosios condition
πD 0.0039 Eichenbaum et al. (2020)
πR 0.3850 Eichenbaum et al. (2020)
sU 0.3088 relative probability of infection
sE 0.6597 2/3 of the population eventually infected

7 The Results

Figure 1 shows the equilibrium probability of getting infected over the course of the
first one hundred weeks. The infection peaks after 28 weeks, when about 6 percent of
employed workers and 3 percent of unemployed workers gets infected. After approxi-
mately 60 weeks the probabilities of getting infected drop close to zero and the fraction
of people who are either dead or infected stabilizes at two thirds of the population. The
pandemics costs lives of 0.67 percent of the population.

To understand the dynamics of the labor market, two factors are critical: the value of
the match, and the labor market tightness. Figure 2a shows the match value for all three
categories of workers. Once the workers recover, the value of the match is obviously the
highest, as there are no additional disruptions to productivity. The value of the match in
the infected stage is lower, because the workers are temporarily unproductive. In both
cases, the values are constant over time. The value of the match in the susceptible stage
on the other hand exhibits substantial dynamics. It clearly co-moves negatively with the
probability of getting infected, which is its main determining factor. It has a U-shaped
profile and reaches its lowest value after 25 weeks, and so is ahead of the infection peak
by about three weeks. Interestingly, the match in the susceptible stage is lower than the
match in the infected stage between weeks 10 and 40. The reason is that the value of the
match in the infected stage takes into account that workers have a higher probability of
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Figure 1: Probability of getting infected

getting infected and lose utility, while this factor does not appear in the infected stage.
When the probability of that happening is large, as it is in the peak weeks, the value of
the match decreases substantially.

The labor market tightness is shown in Figure 2b. Recall that labor market tightness
is normalized to one in the recovered market. We find that labor market tightness drops
substantially in the susceptible market: at its minimum, in week 25, it drops to less than
40 percent of its steady state value. To see why, consider the free entry condition:

k
q(θS

t )
= β(1− φ)(1− πUI

t )FS
t .

The left-hand side is increasing in θS
t . Market tightness will then be lower if the value of

the match is lower, because it does not pay off to post vacancies. The market tightness
will also be lower if the probability of getting infected is higher, because this increases
the chance that the match will be unproductive. We have seen in Figures 1 and 2a that
both factors reinforce each other, because the value of a match is the lowest when the
probability of getting infected is the highest. As a result, the labor market tightness
co-moves strongly negatively with the probabilities of getting infected. In the long run,
as the probability of getting infected converges to zero, the labor market tightness con-
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Figure 2: Labor market tightness and match value.

verges to its steady state level of one.
What do these forces imply for the dynamics of wages and unemployment? Figure

3a shows the wage rate. Immediately after the pandemics starts, the wage in the market
for susceptible workers drops below its steady state value by about three percent. It
continues decreasing, but then it reverses trend when the probability of getting infected
takes off, and increases above its long-run value. After the epidemics peaks, the wage
rate in the susceptible market start declining again. At its peak, the wage rate is almost
10 percent above the recovered wage, while at its minimum it is about 5 percent below.
The model thus predicts, first, a relatively strong segmentation in the labor market and,
second, substantial volatility of wages in the economy.

What explains the reversals in the wage rate? Consider again the expression for the
equilibrium wage (25). The equilibrium wage is a product of two factors: the reservation
wage, and the surplus match. We have already seen in Figure 2a that the match surplus
is U-shaped. That tends to decrease the equilibrium wage rate. Figure 3b reproduces
the match value and also shows the reservation wage. The reservation wage moves in
the opposite direction than the value of the match. The expression for the reservation
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Figure 3: Wage rate, match surplus and reservation wage. Match surplus and reservation
wages represent deviations from their long-run values.

wage (24) makes it clear why. It is both because the value of the future match is low, and
so the expected future gains are relatively low, and because there is a higher chance of
getting infected when employed, and that chance is particularly high in those periods.
So both forces move the equilibrium wage in the opposite direction. But the reservation
wage is more forward-looking than the match value and so starts increasing earlier than
the match value starts decreasing and then starts decreasing earlier, which produces the
pattern in figure 3a.

Finally, consider the unemployment rates in Figure 4. As the wage among susceptible
workers starts rising, less vacancies are created and the market tightness starts dropping,
the unemployment rate starts rising. It peaks in week 33, 5 weeks after the pandemics
peaks, when it reaches more than 10 percentage points, which is almost 50 percent above
its steady state level. On the other hand, the unemployment among the recovered starts
decreasing right after the pandemics and stays lower for almost all periods. This is due
to a selection effect: since employed people are more likely to get infected, they enter
the pool of recovered people at a higher rate than the unemployed, and so drive the
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Figure 4: Unemployment rate in the susceptible and recovered stage, and overall unem-
ployment rate.

unemployment rate down.

7.1 Rigid Wages

One may ask if the behavior of labor markets, and especially changes in wages, con-
tribute or inhibit the spread of the infection. To that end, we now consider alternative
labor market arrangements, where wages, instead of being renegotiated continuously
every period, are rigid. They stay the same throughout the epidemics, at their initial
steady state value. We denote the initial value by w0. For brevity, we only characterize
the dynamics of the firm’s problem in the infected and susceptible stage, and the deter-
mination of the labor market tightness in the susceptible stage. The value function of the
firm is

JS
t (w0) = y− w0 + β(1− λ)

[
πEI

t+1 J I(w0) + (1− πEI
t+1)JS

t+1(w0)
]

J I(w0) =
−w0 + β(1− λ)πR JR(w0)

1− β(1− λ)(1− πR − πD)
.

Since the economy returns to the pre-epidemics steady state, the value of the firm in
the recovered stage happens to be the same as in the model with flexible wages, and we
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Figure 5: Labor market: flexible vs rigid wages.

omit it. Labor market tightness is obtained so as to equate the value of a vacancy to the
cost of a vacancy k,

JS
t (w0) =

k
β(1− πUI

t+1)q(θ
S)

.

If the wage w0 is higher than the flexible wage, the labor market tightness decreases
and vice versa. Figure 3a has shown that flexible wages first drop below the steady
state value, and then, before the epidemics peaks, rise above. The labor market tightness
under rigid wages must therefore be initially lower. This is exactly what happens, as
figure 5a shows. As a result, the unemployment rate increases more, and peaks at more
than 10 percent, instead of 8.5 percent under flexible wages (figure 5b).10

Higher unemployment under rigid wages mean that the infection spreads at a lower
rate. Figure 6a shows that, indeed, the probability of getting infected decreases by about
half of a percent. The fraction of recovered and dead also decreases, by one percentage
point, to 65.6 percent. Interestingly, although the benefits seems small, they outweigh

10Interestingly, labor market tightness is lower under rigid wages for the whole episode, even when the
flexible wage rises. This is because there is now more unemployed people, and so the denominator of
V/U is higher.

26



10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

(a) Probability of getting infected

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Fraction of recovered and dead.

Figure 6: Pandemics: flexible vs rigid wages..

the cost of an inferior labor market allocation, and overall welfare slightly increases. This
is purely due to the epidemics and the associated externality, and would not be possible
in its absence.

8 Efficient Allocations and Optimal Quarantine

The equilibrium of the model is not efficient, even when the Hosios condition holds,
because of the externality coming from the propagation of the infection. Individuals
obviously do take into account that, if they choose to work, they increase the probability
that they would themselves get infected. They do not, however, take into account that, if
they get infected, the probability that others will get infected increases. We have already
seen that rigid wages can dominate a flexible wage scenario, because they decrease the
employment rate and save lives. But, of course, there is no reason to believe that rigid
wages would be the best possible scenario. We now consider the planning problem
directly.

We consider two versions of the planning problem. The first version, less authori-
tative, takes the separation rate λ as given. That is, the planner cannot forcibly move
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the individuals from employment to unemployment and vice versa. This is the usual
notion of the planning problem in this context. The second version of the planning
problem allows the planner to terminate job matches, and move people from employ-
ment to unemployment in excess of what is dictated by the separation rate. We think
of the extra option of forcibly moving people out of employment and destroying labor
market matches as a version of a quarantine. Correspondingly, we will call the outcomes
of the first problem as efficient allocations without quarantine, and the outcomes of the sec-
ond problem as efficient allocations with quarantine. Note that, absent pandemics, both
problems would coincide, because the equilibrium would be efficient planner would not
want to voluntarily destroy any matches. As we will see, this result no longer holds
during pandemics.

We now formulate both versions of the planning problem. In the planning problem
without quarantine, the social planner chooses the flows {USt, ESt, UIt, EIt, URt, ERt, Dt},
as well as the number of vacancies {VSt, VRt}, to maximize the present value of re-
sources,

∑∞
t=0 βt [(ESt + ERt)y + (USt + UIt + URt)b− (UIt + EIt)c− (VSt + VRt)k] ,

subject to laws of motion (1) and (2), where the probabilities of being hired are given by
(3) and the infection probabilities are given by (4a) and (4b). In the planning problem
with quarantine, we define Qt to be the number of quarantined people in the susceptible
stage in period t. Quarantined people change the labor market flows in the susceptible
stage from (1a) and (2a) to11

ESt+1 = (1− λ)(1− πEI)ESt + pS(1− πUI)USt −Qt (26)

USt+1 = (1− pS)(1− πUI)USt + λ(1− πEI)ESt + Qt. (27)

The social planner’s problem with quarantine modifies the problem without quarantine
by replace (1a) and (2a) with (26) and (27), and by allowing the planner to choose the
number of quarantined people {QS

t } subject to the nonnegativity constraint QS
t ≥ 0.

Additional details of the solution to both planning problems are in the Appendix A.
We note that in both planning problems, the objective function can be considered

11We do not allow the social planner to move people in the infected or recovered stage. The social
planner has nothing to gain by doing so.
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somewhat restrictive: the loss of one’s life is measured purely in terms of the loss of
output. It is, of course, reasonable to argue that a loss of life has higher cost, not in-
ternalized by individuals, as in, for example, Alvarez et al. (2020). It is in fact easy to
extend the planning problem in this way. However, we wish to stay away from assigning
arbitrary values to one’s life. In this way, our planning problems, and the policies that
they imply, can be seen as a sort of a lower bound on such policies when a life has larger
cost.12

The efficient allocations can be characterized by the employment and unemployment
flows, and by the labor market tightness ratios. The recovered stage is efficient as long as
the Hosios condition holds, and has the same labor market tightness. The infected and
susceptible stage is not efficient. The red line in Figure 8a shows that, if the planner is
not allowed to use quarantines, the market tightness drops to zero in week 18, when the
pandemics is on the rise. This is because the social value of the match drops below zero:
when the pandemics is on the rise, the negative externality from jobs is the strongest. In
contrast, as evidenced from a strictly positive labor market tightness in the equilibrium
allocation (as well as from Figure 2a directly), the private value of the match is still
substantially positive and new jobs are still being created.

When the social value of the match drops becomes negative, the planner wants to
destroy matches. This is exactly what a quarantine does here. The quarantine happens
in week 24. The number of quarantined people is such that labor market tightness
becomes exactly zero, as the yellow line in Figure 8a shows. It is worth noting that is
is optimal to move people from employment to unemployment only once, before the
pandemics peaks, even though the planner has the option to do it repeatedly. This is
because the rate at which people get back to employment is low when the pandemic
peaks, and so there is no need to continue removing people from employment later. The
job finding rate only accelerates after the pandemics peaks, but then the externalities are
too small to warrant another quarantine. Note also that the labor market tightness is
higher before the quarantine, relative to the efficient allocation without quarantine. It
is less costly to create matches, because they can be destroyed during quarantine. In
contrast, if quarantine is not feasible, the matches will persist and will contribute to the
epidemics.

Figure 7b shows the efficient unemployment rate. In both planning problems, the

12See Hall et al. (2020) for calculations regarding the trade-off between lost consumption and lives,
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(a) Labor market tightness, susceptible stage.
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Figure 7: Labor market: equilibrium vs. efficient allocation

overall unemployment rate is significantly above the equilibrium one. While the equi-
librium unemployment rate is about 8.5 percent, in the optimum it almost doubles to
more than 15 percent even without the use of a quarantine. If a quarantine is used,
then it naturally rises even more and, as the results show, substantially more: 24 percent
of all employees are optimally quarantined in period 18, and the unemployment rate
rises to more than 35 percent. After that, the quarantined people, now mixed with the
people who lost their jobs in a regular way, slowly get back to the pool of employed peo-
ple. Since the job finding probability depends positively on the labor market tightness,
Figure 8a shows that the job finding probability after week 35 exceeds the job finding
probability in the efficient allocation without quarantine: at that point the peak of the
pandemics has passed, and is is optimal to reduce the pool of unemployed fast.

What are the extra benefits gained in both efficient allocations? We look at the pro-
gression of the pandemics throughout the population in Figure 8. Figure 8a shows that
the probability of getting infected is reduced by about one one percentage point in case
of a quarantine, and by about half a percentage point without a quarantine. In case of a
quarantine, the probability declines afterward very sharply and stays substantially lower
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Figure 8: Pandemics: equilibrium vs. efficient allocation

during the peak of the pandemics. After the pandemics peaks, after week 46, the prob-
ability of getting infected is slightly higher in both efficient allocations, because some
of the infections are effectively pushed forward towards later dates. If the quarantine is
not used, then the fraction of the recovered and dead decreases by about 3.5 percentage
points, to 63.1 percent. Since the death rate is one percent, it saves 0.035 percent of the
population, which is about 117 000 lives.13 If quarantine is used, the number of lives
saved is substantially higher. The fraction of recovered and dead drops by more than 10
percentage points to 56.3 percent. This translates into savings of approximately 339 000
lives.

Implications for policies. There may be multiple policies that achieve the efficient allo-
cation. The goal of all of them is to align the private and social value of a match. One of
the possible policies is a tax on vacancy creation. Suppose that θ∗St is the efficient labor
market tightness in the susceptible stage, and F∗St and pi∗UI is the corresponding social
value of the match and infection probability. Then a tax on vacancy creation {τt} must

13We assume that US population is 327 million
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satisfy

(1− φ)F∗St =
k + τt

β(1− π∗UI
t+1 )q(θ

∗S
t )

.

Since the value of the matches is always lower in the efficient allocations (as implied, for
example, by figure 8a), the tax on vacancy creation is always positive, and the largest
throughout the peal of the epidemics. The policy recommendation contrasts here with
Guerrieri et al. (2020), who advocate policies that reduce the number of business shut-
downs and exits. In their case, the externality from keeping businesses afloat is positive,
because it increases aggregate demand. In our model, the externality is negative, because
it increases the spread of the pandemics.

Output loss vs loss of lives. We summarize the loss of lives, as well as the loss of
output under various scenarios, in Table 2. Letting the epidemic progress without the
government intervention results in a 4.4 percent loss of output during the first year of the
pandemics and, the calibrated value of two thirds of one percent of the population. The
output loss under rigid wages is somewhat larger, as is the loss of lives. The efficiency
dictates even larger loss of output: 7.2 percent without a quarantine, and 11.8 percent
with quarantine, with proportionally larger savings of lives, as discussed before. The
recession produced under quarantine is thus almost three times as large as it would be
in the absence of the government intervention. The loss of output during the worst week
of the pandemics is much larger: 11.1 percent under flexible wages, and 38.8 percent
under quarantine.

Table 2: Loss of Output and Lives

Loss of output Loss of lives
annual peak

Equilibrium, flexible wages 4.4 % 11.1 % 0.67 %
Equilibrium, rigid wages 5.6 % 12.4 % 0.66 %
Efficient, no quarantine 7.2 % 17.3 % 0.63 %
Efficient with quarantine 11.8 % 38.8 % 0.56 %

Loss of output and loss of lives in the four scenarios. Annual loss of output is the fraction
of output lost during the first year. Peak loss of output is the largest weekly loss of output.
One tenth of one percent loss of lives represents approximately 327 000 lives.
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9 Conclusions

We use a standard search and matching theory to study the impact that a COVID-19
pandemics has on the behavior of labor markets, and on the optimal policies during
the pandemics. We find that the labor market separates the recovered and susceptible
individuals. The epidemics has two opposing effects on wage formation of the people
who are susceptible to the infection: the reservation wage increases because labor market
activities make one more likely to get infected, but the value of the match decreases
because job tenure is shorter and potentially less productive. We find that the second
effect dominates before the pandemic peaks, while the first one dominates during and
after the peak, and so the wage first decreases and then substantially increases. The
unemployment rate increases substantially among the susceptible, decreases among the
recovered, and increases overall by about 3 percentage points.

Since the equilibrium is not efficient because of an infection externality, we also study
the efficient allocations. We consider two scenarios, one where the government is not al-
lowed to destroy matches, and one, where the government can quarantine people and
destroy matches. In both cases, the government wants to tax vacancies creation, espe-
cially around the peak of the epidemics, and slow down the spread of the epidemics.
We find that the, unlike its private value, the social value of the match becomes negative
before the epidemics peaks, and the government optimally quarantines about a quarter
of the employed individuals. This has substantial output cost, almost 40 percent of the
output during the weeks when the epidemics peaks, but saves about 339 000 lives.
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Appendix A: The Efficient Allocations

We assume that the matching function takes the form assumed in the calibration. The
problem is to choose the flows {USt, ESt, UIt, EIt, URt, ERt, Dt} and {VSt, VRt} maxi-
mize

∑∞
t=0 βt [(ESt + ERt)y + (USt + UIt + URt)b− (UIt + EIt)c− (VSt + VRt)k]

subject to the constraints

USt+1 = [1− sU(EIt + UIt)] [USt −m(USt, VSt)] + λ[1− sE(EIt + UIt)]ESt + Qt

ESt+1 = (1− λ)ESt − (1− λ)sE(EIt + UIt)ESt + [1− sU(EIt + UIt)]m(USt, VSt)−Qt

UIt+1 = (1− πR − πD)UIt + sU(EIt + UIt)USt + λsE(EIt + UIt)ESt + λ(1− πR − πD)EIt

EIt+1 = (1− λ)(1− πR − πD)EIt + (1− λ)sE(EIt + UIt)ESt

URt+1 = URt −m(URt, VRt) + πRUIt + λπREIt + λERt

ERt+1 = (1− λ)ERt + (1− λ)πREIt + m(URt, VRt),

and a nonnegativity constraint Qt ≥ 0. Let µtβ
ER
t+1, µtβ

UR
t+1, µtβ

ES
t+1, µtβ

EI
t+1 , µtβ

US
t+1 , µtβ

UI
t+1

be the Lagrange multipliers on the corresponding constraints. We proceed recursively,
first solving the recovered stage and then the jointly the susceptible and infected stage.
The first-order conditions for the recovered stage are again independent of time and
satisfy

k = β
(

µER
t − µUR

t

)
mV(URt, VRt)

µUR
t = b + β

[
µER

t+1mU(URt+1, VRt+1) + µUR
t+1 [1−mU(URt+1, VRt+1)]

]
µER

t = y + β
[
µER

t+1(1− λ) + µUR
t+1λ

]
The recovered stage will again feature steady state values of θR and the multipliers.
Combining and using the functional form for the matching function, we obtain an equa-
tion in θR, which is again independent of time:

k = β(1− α)
y− b

1− β(1− λ− αρ)
q(θR)
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which is identical to the equilibrium condition for θR if φ = α, which is the Hosios
condition. It follows that µUR and µER are also independent of time.

The first-order conditions in the employment and unemployment flows for the in-
fected and susceptible stage are:

µUI
t = b− c + β

[
(1− πR − πD)µ

UI
t+1 + πRµUR

− (µES
t+1 − µUS

t+1)s
Um(USt+1, VSt+1) + (µEI

t+1 − µES
t+1)(1− λ)sEESt+1

+ (µUI
t+1 − µUS

t+1)(s
UUSt+1 + λsEESt+1)

]
µEI

t = −c + β
[
λ
(
(1− πR − πD)µ

UI
t+1 + πRµUR

t+1

)
+ (1− λ)

(
(1− πR − πD)µ

EI
t+1 + πRµER

t+1

)
− (µES

t+1 − µUS
t+1)s

Um(USt+1, VSt+1) + (µEI
t+1 − µES

t+1)(1− λ)sEESt+1

+ (µUI
t+1 − µUS

t+1)(s
UUSt+1 + λsEESt+1)

]
µES

t = y + β
[
(1− λ)

(
(1− sE It)µ

ES
t+1 + sE It+1µEI

t+1

)
+ λ

(
(1− sE It+1)µ

US
t+1 + sEµUI

t+1

)]
µUS

t = b + β
[
(1−sU It+1)mU(USt+1, VSt+1)µ

ES
t+1 + (1−sU It+1)(1−mU(USt+1, VSt+1)µ

US
t+1 + sU Itµ

UI
t+1

]
The second ant third lines of the first and second condition represent new terms that
reflect the externality of the problem. The first-order condition in the vacancies VS

t is

k = β
(

µES
t − µUS

t

)
(1− sU It)mV(USt, VSt).

In the planning problem without quarantine, Qt is set equal to zero. The first-order
conditions are solved recursively, together with the laws of motion (1) and (2).

In the planning problem with quarantine, Qt is chosen by the planner, but must be
nonnegative. This yields the complementarity-slackness condition in Qt:

µES
t − µUS

t ≥ 0, Qt ≥ 0, (µES
t − µUS

t )Qt = 0.

We again solve the problem recursively and look for the sequence of {Qt} that satisfies
the complementarity-slackness conditions.
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